
273 

On the non-linear energy transfer in a gravity 
wave spectrum 

Part 2. Conservation theorems; wave-particle analogy; 
irreversibility 

By K. HASSELMANN 
Institute of Geophysics and Planetary Physics and Department of Oceanography, 

University of California, La Jolla 

(Received 7 August 1962) 

From the conditions of energy and momentum conservation it is shown that 
all four interaction coefficients of the elementary quadruple interactions dis- 
cussed in Part I of this paper are equal. A further conservative quantity is then 
found which can be interpreted as the number density of the gravity-wave 
ensemble representing the random sea surface. The well-known analogy between 
a random linear wave field and a mass particle ensemble is found to hold also 
in the case of weak non-linear interactions in the wave field. The interaction 
conditions for energy transfer between waves to correspond to the equa- 
tions of energy and momentum conservation for a particle collision, the final 
equation for the rate of change of the wave spectrum corresponding to Boltz- 
mann’s equation for the rate of change of the number density of an ensemble of 
colliding mass particles. The stationary wave spectrum corresponding to the 
Maxwell distribution for a mass particle ensemble is found to be degenerate. The 
question of the irreversibility of the transfer process for gravity waves is discussed 
but not completely resolved. 

1. Conservation theorems 
In  Hasselmann (1962; referred to in the following as I) it was shown that the 

non-linear coupling between the spectral components of a random, homogeneous 
sea gives rise to an energy transfer 

- B ~ w ~ F ~ F ~ F $  S(w1 + 0 2 - 6 ~ 3 -  04) 6(kl + k2 - k3 - k4) d2k1d2k2d2k3, (1.1) 

where 4 = P(kj) is the energy spectrum in terms of wave-number, defined 
such that only waves travelling in the positive kj-direction contribute to the 
spectrum at kj. The energy transfer results from resonant coupling between 
four wave components, the &functions expressing the fact that resonance occurs 
only if the components satisfy the conditions 

k, + k2 = k3 + k4, (1.2) 

w,+w, = w3+wj,  (1.3) 
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where wi = (gkitanhk,h)a is the free-wave frequency (h  = water depth). Equa- 
tion (1.1) is equivalent to equation (4.29) of I, the integration variables having 
been suitably interchanged in order to obtain common &functions and the inter- 
action coefficients renamed as follows: 

D - D + + -  D - D + + -  D - D + + -  + + -  
1 - ks,kp,--kz, 2 - k ~ 4 ,  -k1, 3 - kl,k~,--hr’ D4 = Dk i.kz, -ks’ 

where D&,k+a,Ikc is the interaction coefficient (I, 4.9) determining the rate of 
energy transfer from three interacting components k,, k,, k, to a fourth com- 
ponent k, + k, - k,. 

Since the transfer process conserves both energy and momentum, equation 
(1.1) must satisfy the conditions 

Equation (1.5) requires some justification, since although it was shown in I 
that the energy redistribution resulting from non-stationary higher-order 
perturbations could be interpreted up to the sixth order simply as a change 
in the spectrum of the linear wave field, it  is not immediately apparent whether 
this holds also for the momentum. The mean momentum per unit projection area 
is 

where v is the velocity, p the density and 6 the surface displacement. To the 
lowest order, the first term on the right-hand side of (1.6) is constant and can be 
made zero by suitable choice of co-ordinate systems, whereas the second term 
is p x ,  yielding, the well-known expression 

for the momentum of the linearized wave field. Since the second term is quad- 
ratic to the lowest order it is readily verified that the analysis of the higher-order 
perturbations of this term follows along exactly the same lines as that in I for the 
energy, which is also quadratic to the lowest order. The result is thus expressible 
in terms of the spectrum of the linear solution. It remains to be shown that the 
first term in (1.6) has no non-stationary components up to the sixth order. 
This follows immediately from the general form of the perturbation equations 
(I, 1.23) for the velocity potential. An nth order velocity potential of the form 
a(t) x + b( t )  y as required for B $: 0 cannot be generated by interactions between 
lower-order solutions, as these produce only harmonic components, provided 
they themselves are harmonic. Thus perturbation solutions with B $: 0 can 
enter only as solutions of the homogeneous perturbation equations via the higher- 
order initial conditions, and can be made zero by suitable choice of the co-ordinate 
system. (This was, in fact, implicitly assumed in I by stating the initial and 
boundary conditions only at the free surface and not at infinity.) 
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If (1.1) is substituted in (1.4) and (1.5) and the transformations 

kl+kl ,  kl+k3, kl+k4 

k2+k2, kZ+k4, kz+k3 

k3+k4, k3+kl, k3+kl 

k4+k3, k4-+k2, k4+k2 
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are carried out in turn for each equation, the sums of the resultant and original 
expressions yield the relations (the first of which was mentioned also in I) 

Equations (1.7) and (1.8) represent a system of three homogeneous equations 
for four unknowns and therefore uniquely determine the ratios of the interaction 
coefficients Dj,  since it is easily verified that the rank of the system is three 
except for isolated points which may be ignored for continuous Di. By com- 
parison of (1.2) and (1.3) with (1.7) and (1.8) the solution is immediately seen to be 

D, = D2 = D3 = D4 = D.  (1.9) 

This rather surprising result was hardly to have been anticipated from the lengthy 
algebraic expression (I, 1.49, 1.50) for the interaction coefficients. 

Apart from simplifying (l.l),  the relations (1.9) lead to a very simple picture 
for the net energy and momentum balance between four interacting wave 
trains. The resultant energy flux is always such that the components on one side 
of the interaction equations (1.2) and (1.3) either both lose or both gain energy, 
the rate of loss or gain of a particular component being proportional to its fre- 
quency. The same is true for the net momentum balance, the transfer rates in 
this case being proportional to the wave-numbers. At a first glance it would 
seem that the relations can be applied further to achieve some simplification of 
the analysis in I. It was possible there to evaluate the energy gain of a given 
component as a result of the direct interaction between three other components 
from a perturbation analysis of only the third order, whereas in order to evaluate 
the energy losses of each of the three interacting components the analysis had 
to be extended further to the fifth order. From the above it now appears that it is 
sufficient to evaluate only the energy gain of the first component, the energy 
losses of the remaining three components then being determined from considera- 
tions of energy and momentum conservation. (The conservation arguments 
can be formulated independent of the final form (1.1) of the energy transfer for 
an elementary group of four interacting wave trains.) However, this argument 
cannot be carried through rigorously, for the third-order perturbation analysis 
yielded not only an energy perturbation term increasing linearly with t ,  as to be 
expected for a transfer expression of the form ( l . l ) ,  but also a spurious term 
increasing proportional to t 2 .  This would normally dominate over the linear term, 
but was found to cancel against a similar term when the analysis was carried 
through completely to the fifth order. 

18-2 
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Equation (1.9) is all that can be inferred from the conservation of mass, momen- 
tum and energy, as the additional condition of mass conservation requires simply 
that the mean surface elevation remains constant, and this can readily be seen 
to be satisfied. However, it  can be shown that a further conservative quantity 
exists, the mean ‘number density’ 

‘ii = //::n(k) d2k (1.10) 

where n(k)  = F(k)/ao, (1 .11)  
with a an arbitrary constant. The equation for the rate of change of n(k)  has 
the symmetrical form 

an, = I.. . /a{n,n2(n3+ n4) - n3n4(n, + n2)}d2kld2k2d2k3, (1.12) 
at 

(1.13) 
9ng2D2a2 

where U =  S(O, + ~2 - ~3 - ~ 4 )  S( k1+ k2 - k3 - k4). 
4p2w1 w2w30)4 

From (1.12) and (1.13) it is immediately seen that 

(1.14) 

Equation (1.12) has formal similarity with the Boltzmann equation for the rate 
of change of the number density, in phase space, of a spacially homogeneous dis- 
tribution of mass particles, except that the collision probability is proportional 
to a cubic rather than a quadratic expression in the ‘number densities’ n(k) .  
It will be seen in the next section that this analogy can be extended and is related 
to the equivalence of wave and ray (or particle) representations of wave fields 
in which the mean quantities vary slowly in comparison to the flucutating 
quantities. 

2. Wave-particle analogy 
Instead of representing a homogeneous, Gaussian sea as a superposition of 

an infinite number of statistically independent, infinitely long wave trains we 
may also, to any desired degree of approximation, consider it to be a superposi- 
tion of a very large number of statistically independent wave groups, the dimen- 
sion of the wave groups being large in comparison to their wavelength. Each 
wave group then propagates with its appropriate group velocity, preserving its 
shape over a distance large in comparison to the dimension of the group. It is well 
known that in the general case in which the phase velocity of the wave-propa- 
gating medium varies with position, the propagation laws of wave groups can 
be expressed in a form completely analogous to the Hamiltonian equations of 
motion for a mass particle in a force field, the frequency and wave-number of a 
wave group corresponding to the energy and momentum of a particle. This sug- 
gests (although the choice is otherwise arbitrary) that we define the energy E of a 
wave group of our ensemble as E = ao, where a is a (very small ) constant. Since 
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the ratio of the momentum to the energy of a wave group is equal to the phase 
velocity, the momentum ofthe wavegroupis p = ak, in accordance with the wave- 
particle analogy. The number density of the wave group ensemble in (k ,  x) phase 
space is then n(k)  = P(k)/tl.w. In  our case of a homogeneous wave field, n(k)  
is independent of x, but the number density can clearly be defined in the same 
way for the more general case of a quasi-homogeneous wave field in a fluid of 
finite, slowly varying depth, and it is then seen that there is a complete analogy 
between an ensemble of non-interacting wave groups and an ensemble of non- 
colliding particles in a force fie1d.t 

It is interesting now to note that this analogy appears to hold also in the case 
of non-linear coupling between the wave components, the interactions between 
waves corresponding to particle collisions. The interaction conditions (1.2) and 
(1.3) may be interpreted as the equations for the conservation of momentum and 
energy of two colliding particles, the index pairs 1, 2 and 3, 4 corresponding to 
the pair of particles before and after the collision respectively. A two-particle 
collision of this form also automatically conserves the mean number density 1.1 
in the x-plane, as required by (1.14). The interpretation of the wave interaction 
conditions as the momentum and energy conservation laws of particle collisions 
probably generalizes to arbitrary wave fields with weak non-linearities. However, 
the number of particles before and after a collision will generally not be the same 
(for example, they are not the same if the energy transfer is of the second rather 
than the third order), so that the conservation of the mean number density in 
our case should be regarded as a coincidence. 

Up to this point there is a complete analogy between an ensemble of interacting 
wave groups and an ensemble of colliding elastic particles. However, on com- 
paring equation (1.12) with the corresponding Boltzmann equation for a mass 
particle ensemble we find a basic difference: the probability of two wave groups 
‘colliding’ is proportional not only to n(k,) and n(k,), as in the case of a mass 
particle ensemble, but also to n(k,)+n(k,) ,  the probability of the inverse 
collision taking place being proportional to n(k,) n(k,) {n(k,) + n(k,)}, with the 
same factor of proportionality (in analogy again to the corresponding symmetry 
of the Boltzmann equation). We may interpret this as an interaction between 
two colliding wave groups k ,  and k ,  taking place only if a wave group k ,  or k, 
is present to act as a ‘catalyst’. 

The difference between the collision probabilities for mass-particle and 
gravity-wave ensembles has important consequences for the development of the 
distribution functions. For every continuous initial distribution, the asymptotic 
solution of the Boltzmann equation is the stationary Maxwell distribution. The 
corresponding stationary rolution in the case of a gravity-wave ensemble will 
be found to be singular, and the question as to whether a given initial distribution 
approaches this solution asymptotically is not as simple to answer. 

t For example, it has been pointed out by G. Backus (private communication) that 
Longuet-Higgins’s (1957) result that the spectral density remains invariant under wave- 
number transformations due to refraction follows directly from this analogy and Liou- 
ville’s theorem for a particle ensemble. 
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3. Stationary solutions, irreversibility 
A stationary solution of equation (1.12) can be obtained by letting the inte- 

grand on the right-hand side vanish identically, the distribution satisfying the 
equation 

for all kj satisfying the interaction conditions (1.2), (1.3). This is possible only if 

with a suitable function f. 
Solving for n( k,) , we have 

n(k1)f 
n(kz) = n(k,) - f ’  

and after differentiation with respect to kli, 

(3.3) 

where Q = w,+w2, k = k,+ k, and cg is the group velocity (k/k)dwldk. Differ- 
entiating now with respect to kzj, we obtain 

Since k, and k, may be varied while k, + k, and w1 + w2 are kept constant, and it 
can readily be seen that the corresponding variations in c,(k,) and cgj(kr) are 
not such that they satisfy a quadratic equation of the form (3.4), equation (3.4) 
can be satisfied only if all the coefficients vanish, 

The general solution of (3.5) is f = (b’+cQ+d,Z,)-l, where b’, c and di are con- 
stants. From (3.3)’ the general solution of n(k) is then 

n(k) = (b+cu+d,kJ-l (3.6) 

The moments of the solution (3.6) corresponding to the mean number, energy 
and momentum density do not exist. Moreover, for d, + 0 the solution becomes 
negative in the region of the k-plane to one side of the curve b +cw+d,ki = 0,  
and is singular on the curve itself. Thus (3.6) cannot be the asymptotic solution 
of an initial distribution corresponding to a finite mean energy and momentum 
unless we let the constants in (3.6) tend to infinity in such a manner that the mean 
number, energy and momentum density become finite, whilst n remains positive 
for finite k. This would require n(k) -+ 0 for fixed k. 

The question then arises as to whether the solutions (3.6) are the only stationary 
solutions of (1.12) In  the case of the Boltzmann equation, the corresponding 



Energy transfer in gravity wave spectra. Part 2 279 

solution obtained by setting the integrand of the collision integral identically 
equal to zero is the Maxwell distribution, and the H-theorem establishes that this 
is indeed the only continuous stationary solution. A theorem analogous to the 
H-theorem can be derived for our case also, but the situation is no longer quite 
so simple, since the expression corresponding to the entropy turns out to be a 
divergent integral. The argument of the irreversibility of the energy transfer 
and the uniqueness of the stationary solution can still be carried through in a 
somewhat limited form, however, if the 'entropy' is defined first as an integral 
over only a finite region of the phase space and the region is then allowed to 
increase indefinitely. 

The usual proof of the H-theorem for the Boltzmann equation is based on 
finding an expression H = - IG(n)  dc, where c is the particle phase space, such 
that dH/dt = - /G'(n) (8npt)dc can be expressed as the integral of a positive 
definite expression in n when the Boltzmann collision formula is substituted for 
&/at, the expression vanishing only if the integrand of the collision integral 
vanishes identically. Considering then the corresponding expression 

in our case, we obtain after substitution of (1.1) for &/at and symmetrizing in the 
same manner as in the derivation of ( 1.7) and (1.8) 

dA - = -/... j~ (=--) (nl+nz) (n3+n4) 

at 4 n1+n2 n3+n4 

x { - G'(n,) - G'(n2) + G'(n3) + G'(n4)}d2kld2k2d2k3d2k4. (3.8) 

If the integrand in (3.8) is to be positive for 

n1nz 123124 
=+-7 

n1+n2 n3+n4 

G'(nl) + G'(n2) Z Q'(n3) + G'(n4), 

the function G' must satisfy the inequalities 

according as 

This condition, in turn, can hold only if 

G'(nl)+G'(n2) = J (:+3 ___ (3.9) 

where J is a monotonically strictly decreasing function. Differentiating (3.9) with 
respect to n,, we obtain 

p(nl)n;  = (" l"~)~r(*).  
n1 + n 2  n,+nz 

(3.10) 

Since the left- and right-hand sides of (3.10) are functions of different arguments, 
both must be constant. Hence G and J have the general form 

G(n) = c1 In n + c z n  + c3, 
C 

J(n) = 2 n + 2cz, 
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where the constants cj have been adjusted to satisfy (3.9). Since J is required to 
decrease monotonically, c1 must be positive. The constants c, and c3 do not enter 
in (3.8) and may be taken as zero. Putting c1 = 1, we thus have, formally, 

where d f i ld t  < 0 for solutions other than the stationary distribution (3.6). 
The latter can also be derived by formal variational analysis from the require- 
ment that I? is a minimum under the side conditions of constant mean number, 
energy and momentum density. 

Unfortunately, I? does not converge. The difficulty can be overcome to some 
extent by introducing the truncated integral 

Inn d2k. 
BR = - 1 L k l C B  

The time derivative of H ,  can then be written in the form 

(3.11) 

x a[n,n,(n,+ n4) - n3n4(n1 + n,)]d2k,d2k,d2k3 , I 
where A ,  is the region (k,l < R, I k,l < R, Ik31 < R and A,  is the complementary 
region of (k,, k,, k,)-space. The product of the region Ik41 < R with A,  is then 
symmetrical in all four wave-numbers, so that the integral can be symmetrized 
as above, giving 

aa, 
__ at = !*” h k c [ < R  

ta[.n,n,(n, +- n4) - n3n4(n, + n,)] 

x d2k,d2k,d2k3d2k4 
n n  

By rather tedious expansion of the transfer coefficient a (part 3) it  can be shown 
that for distributions which fall off asymptotically a t  a rate more rapidly than 
k4”5 the second integral becomes small in comparison to the first as R --f 00. 

Since the first integral is negative except for distributions of the form (3.6) (which 
decay more slowly than k-4.75) we thus have for sufficiently large R 

% < O .  dt 

For H ,  to be finite, wemust exclude distributionswhichvanishinsomeregions of 
the k-plane. However,iftheareaoftheregioninwhichn $; Oisnon-zeroit is readily 
seen that dnldt must be positive in at least part of the region n = 0, for it is then 
always possible to find an interaction in which energy is transferred from three 
wave-numbers lying just outside the region n = 0 to aresultant wave-number just 
within. Thus these distributions are also non-stationary. If the area of the region 
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in which n + 0 is zero, i.e. if n is a discrete superposition of &functions, this 
argument does not hold and one can then indeed find distributions which are 
stationary, for example, if the wave-numbers of the &functions are non-inter- 
acting or the energies of interacting components are equal. However, these are 
unstable limiting cases in the sense that a slight broadening of the spectral lines 
leads rapidly to a further line broadening accompanied with a decrease of the 
spectral peak.t They are thus analogous to the degenerate stationary solution of 
the Boltzmann equation in which all particle velocities are equal and are of no 
significance for the question of irreversibility. 

Unfortunately, the restriction imposed on the asymptotic behaviour excludes 
distributions which may be feasible physically. For the mean square wave 
slope to be finite, for example, the exponent need only be smaller than -4.5. 
It is not clear whether stationary solutions other than (3.6) exist for exponents 
greater than - 4.75. The question is of interest, in particular as regards the possible 
existence of stationary distributions corresponding to Kolmogoroff’s inertial 
subrange for turbulent spectra. It may be of interest in this connexion that the 
condition n ( k )  > O(k-4.75) is identical with the condition for a predominately 
local energy transfer at high wave-numbers (part 3). None the less, it  is felt 
that solutions of this type probably do not exist, as it is difficult to see how a 
constant energy flux from an energy source a t  zero wave-number to a sink at  
infinity can conserve both the mean energy E = alJn(k)wd2k and the mean 
number density ?i = J / n ( k )  d2k. 

There is then some evidence that the only stationary solutions of (1.12) 
are the degenerate distributions (3.6), and that all other distributions tend to 
these irreversibly. It may appear surprising that despite the general analogy be- 
tween a gravity-wave and mass-particle ensemble there should be such a marked 
difference in the form of the stationary distributions, since theMaxwell-Boltzman 
distribution holds not only for a mass-particle ensemble but under very general 
conditions for any system which can be described in terns of a Hamiltonian. 
However, the basic difference can be attributed to exactly this fact. Although 
for a gravity-wave ensemble the evolution of a microsystem (i.e. the propagation 
of a wave group) can be represented in a Hamiltonian form, this is not generally 
the case for the macrosystem consisting of a number of interacting wave groups, 
since the energy transfer between a discrete set of wave groups depends not only 
on the momentum and position of the wave groups but also on their relative 
phases. The dependence on phase vanishes only in the case of a Gaussian 
ensemble. 
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